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1.  Introduction 
 
1.1  Why Acoustic Waveguides? 
 
 Let us suppose that we want to know how much acoustic power can be produced 
by a bugle.  We invite a cooperative bugle player into a room outfitted with a calibrated 
microphone and recording equipment (Figure 1.1).  Suspecting that high notes are the 
most powerful, we ask her to blast away as loudly as possible in the upper range of the 
instrument.   
 

 
 

Figure 1.1.  Measuring the acoustic power of a bugle. 
 

To analyze our data we could approximate the bugle bell as a point source 
emitting a spherical wave, and infer the total power from the acoustic pressure measured 
at a known distance. A bit of elementary acoustics (see Chapter 2) shows that the 
relationship between the pressure amplitude p measured at a distance r from the source, 
and the total radiated power P is 

 

,
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π=  (1.1) 

 
where ρ is the density of air and vs is the sound velocity, 344 m/s (at 20 °C).  The 
frequency of the sound will be around 1000 Hz, implying a wavelength of about 30 cm. 
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If we actually try this experiment, we will encounter several problems.  First, our 
results will be very sensitive to the position of the microphone and the bugle in the room.  
This is because, in a typical room, sound will bounce off the walls many times before it is 
absorbed, and each of the paths that the waves take to reach the microphone will combine 
coherently, producing a complicated interference pattern.  We might hope that this 
difficulty would disappear in a very large room, since then the reflected waves would be 
absorbed before they reach the microphone.  Unfortunately, it turns out that to suppress 
the effects of reflections we would need a very large room indeed, because the 
attenuation of 1000 Hz sound in air is only about 0.005 dB per meter (at 20 C and 30% 
relative humidity).  Even in a large enough room we will still have to contend with floor 
reflections, unless we are willing to suspend our cooperative player in mid-air.  A better, 
but costly, solution would be to build a room with sound absorbing walls and floor—an 
anechoic chamber.   

 
There will be other difficulties.  We do not expect the bugle to emit power equally 

in all directions, so for a reliable measurement of the total power we will have to extend 
(1.1) to allow for angular variations, and then measure the sound pressure at a range of 
angles relative to the bugle bell’s axis of symmetry.  We should also aware that our 
microphone scatters the sound field, so the pressure it measures is not the same as the 
pressure of the sound field with the microphone removed.  We can deal with this by 
applying appropriate free-field corrections,1 or by using a small microphone, for which 
the corrections will be small.  If we are aware of each of these issues, can manage the 
effort and expense, and if our musician remains cooperative, we will then be able to make 
accurate measurements. For an example of a study of this kind in an anechoic chamber, 
see Martin.2  In the absence of an anechoic chamber there are approximate ways to 
measure power in a room with reflective walls that make use of measurements of the 
room’s reverberation time.3

 
Is there a simpler and more elegant approach?  Suppose we were able to modify 

the bugle and install several small microphones in the wall of its tubing (as in Figure 1.2) 
such that they would measure, but not disturb, the pressure in the bore.  With one 
microphone we could record the sound intensity in the bore, but would obtain no 
information about radiated power.  However, with data from several microphones, we 
could separately determine the right-going and left-going wave amplitudes in the bore, 
and thus infer the amount of power lost to radiation when the right-going wave reaches 
the bell.  There are two major advantages to this approach: 

 
• We have drastically reduced the complexity of the sound field that we must measure.  

In a straight or slowly tapering cylindrical waveguide such as a bugle bore, there is 
just one propagating acoustic mode, as long as the free-space wavelength is greater 
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than 1.71 times the inside diameter.4  At each frequency, the entire wave field is 
described by just four real numbers (or by two complex amplitudes), representing the 
right and left-going amplitude and phase. 

 
• We have removed the microphone bodies from the sound field so that we not longer 

have to apply free-field corrections.   
 

 
 

Figure 1.2.  Bugle instrumented with four microphones.  The microphones 
are inserted into holes in the bugle’s tubing and sealed so that they 
measure the pressure inside the bore.  Ideally, the measured sound 
pressure is  the same as was present before the bugle was modified. 
 
These advantages of waveguide measurements carry over to a wide range of 

studies in acoustics.  The phase velocity of the lowest propagating mode in an acoustic 
waveguide is generally close to the free-space sound velocity,5 so sound velocity can 
conveniently be measured in a waveguide as a function of gas composition, temperature, 
and pressure, in the presence of a flow field, and even in turbulent flows.6  Damping of 
acoustic waves in waveguides is easily observed and is a function of  the shear viscosity 
and thermal conductivity of the gas.7  The sound absorption properties of solid materials 
are important in several areas of engineering, including vehicle design, concert hall 
acoustics, and architectural and environmental noise-control situations.  Acoustic 
materials (such as ceiling tiles) can be characterized through their effects on room 
reverberation time, but it is also helpful to study samples of sound absorbing materials in 
acoustic waveguides.8  Returning to the field of musical acoustics, in addition to studies 
of radiation from horns,9,10 waveguide measurements on the acoustics of woodwind tone 
holes have been reported.11  Woodwind instruments are self-sustaining acoustic 
oscillators, and like all such oscillators, they contain an amplifier.  Waveguide techniques 
have been used to study the air-jet amplifier in flute-family instruments.12,13  Detailed 
measurements of the input impedance of flutes, measured at the embouchure hole, have 
also been reported.14
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Sound propagation in waveguides is of direct importance in architectural 

acoustics, because sound transmitted through ventilation ducts can be a major source of 
unwanted noise in buildings.15  Related problems arise in the design of acoustic mufflers 
for engines.16  In medicine, sound propagation in human airways has been used for 
diagnostic purposes.17  Other interesting acoustic waveguide measurements are discussed 
or suggested in Chapter 7. 

 
From an educational standpoint, acoustic waveguides provide an inexpensive and 

accessible window into the basic concepts of wave propagation.  These are essential to all 
areas of physics (classical mechanics, quantum mechanics, continuum mechanics, 
electromagnetism, optics, plasma physics, solid-state physics...) to nearly all areas of 
engineering (electrical, mechanical, civil, architectural...), and to many other basic and 
applied sciences (geology, oceanography, medical imaging…).  At the most elementary 
level, wave concepts include superposition,  the distinction between standing and running 
waves, the use of complex numbers to represent sinusoidally varying quantities, and the 
distinction between phase and group velocity. Slightly more advanced concepts, still 
common in the undergraduate curriculum, include wave impedance, termination 
impedance, the reflection coefficient and its relation to termination impedance, abrupt 
impedance discontinuities, tapered transmission lines, scattering matrices, radiation, and 
radiation reaction.  At the advanced undergraduate and graduate levels there are more 
topics:  propagation in periodic media and band-gaps, resonant cavities and coupling of 
cavities to transmission lines, the distinction between acoustic and optical propagation 
modes, resonant scattering, propagation in disordered media, and pulse dispersion. 

 
1.2  Waveguide Measurement Systems 
 
 (Here we need a general introduction to types of measurement systems: multi-
microphone reflectometer, VNA, impedance head, importance of multi-channel 
simultaneous sampling digitization.) 
 

Historically, sensitive and stable microphones were rather large, and collecting 
data coherently from many channels was either impossible or prohibitively expensive.   
Experimenters interested in acoustic waveguide measurements developed clever schemes 
to obtain information from single microphones.18-20  Standing waves in tubes could be 
investigated by moving a microphone along a wall with the aid of some type of sliding 
seal, or in a vertical tube a relatively small microphone could be hung by a wire and 
moved along the axis.  These methods are closely analogous to slotted-line techniques 
used in microwave and radio-frequency electronics, which date back to Hertz.  The 
earliest acoustic example may that of Taylor,21 from 1913.  Another approach involves 
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creating a known acoustic flow, which, together with a pressure measurement, allows one 
to establish the impedance at one end of a waveguide.22  Methods using moving 
microphones (or a moving plunger and a fixed microphone) are usually called standing 
wave tubes or impedance tubes, while those employing a known acoustic flow are 
referred to as impedance heads.   

 
The use of several, fixed, coherently recorded microphones dates from the mid 

1970s.  Specific systems and methods of analyzing data have been described by several 
authors.  Seybert and Ross23 developed an influential technique involving two fixed 
microphones and random excitation.  Systems with more microphones have also been 
reported,24-26 and have become more practical as the necessary data acquisition hardware, 
processing power, and storage have all become more affordable.  The advantage of 
multiple microphones can be understood by counting the number of parameters that one 
would like to measure.  The reflection coefficient contains two real numbers, a magnitude 
and a phase.  With two microphones one also gets two numbers, a relative phase and a 
magnitude ratio.  (The absolute magnitude may be also measured, but the reflection 
coefficient is independent of it, being a ratio of amplitudes.)  However, for accurate 
results both the phase velocity and the attenuation constant of the waves in the waveguide 
should be measured, requiring two more numbers, and hence at least three microphones 
are needed if one wants to make independent measurements at each frequency.  Even 
more microphones are helpful to demonstrate that the assumed physical model (i.e., one-
dimensional waves with certain values of the attenuation constant and phase velocity) 
actually gives an accurate description of the sound field in the waveguide, and to provide 
wide frequency coverage. 

 
Modern systems usually use laboratory-quality microphones, which are very 

stable and typically supplied with absolute pressure-sensitivity calibration data.  
However, for most measurements relative amplitude and phase calibration is more 
important than absolute calibration.  Microphones based on inexpensive miniature 
electret elements can be use for accurate measurements of the reflection coefficient if 
relative phase and amplitude calibrations can be easily repeated, so that long-term 
stability is not required,  and if suitable buffer electronics is provided.  For accurate 
absolute measurements, some method of absolute calibration must also be available.  In 
Chapter 5 we show how a convenient relative calibration method can yield reflection 
coefficient measurements with an accuracy of a few percent, even with inexpensive 
microphones. 
 
References for Chapter 1 
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2.  Elementary Acoustics 
  
 In this chapter we derive the basic equations governing acoustic waves, introduce 
plane- and spherical-wave solutions, and discuss acoustic power.  Similar material can be 
found in many texts. For discussions at more-or-less the same level as below, see Fletcher 
and Rossing,1 or Fetter and Walecka.2  For a much more comprehensive treatment see 
Morse and Ingard.3

 
2.1  Helmholtz Wave Equation 
 
 Newton’s law for a fluid element with velocity ur and density ρ is given by 

 

,p
dt
ud

∇−=
rr

ρ  

 
where the total derivative gives the acceleration of the fluid element along its path of 
motion.  The acceleration may instead be described in terms of the rate of change of the 
velocity field at a fixed location by substituting the convective derivative 
 

,∇⋅+
∂
∂

=
rru

tdt
d   

 
which yields Euler’s equation 
 

( ) .puu
t
u

∇−=⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂ rrrr
r

ρ  (2.1) 

 
To ensure that mass is conserved, we require that solutions also satisfy the continuity 
equation: 
 

( ) 0=∇+
∂
∂ u

t
rr

ρρ  (2.2) 

 
 Acoustics is concerned with small variations δp, δρ, and ur  about a quiescent 
state, which we take to be uniform and time-independent, with and 0=ur

00  , ρρ == pp .  We assume that the pressure variation is a smooth and local function of 
the density variation so that it can be expressed as 
 

,δρ
ρ

δ
∂
∂

=
pp  (2.3) 
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where the partial derivative is evaluated at the quiescent condition.  The evaluation of this 
partial derivative depends on an equation of state and other thermodynamic variables as 
we shall discuss below.  Linearizing (2.1) in the small quantities yields  
 

,0 δρ
ρ

δρ ∇
∂
∂

−=∇−=
∂
∂ rrr pp

t
u  (2.4) 

 
while (2.2) becomes 
 

.00 =⋅∇+
∂
∂ u

t
rr

ρδρ  (2.5) 

 
These two equations are equivalent to a wave equation, as can be seen by taking the 
divergence of (2.4), the time derivative of (2.5), and then eliminating the mixed 
derivative terms to arrive at: 
 

.    ;0    ;0 222
2

2
22

2

2

ρ
δδρ

∂
∂

==⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∇−

∂

∂
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∇−

∂

∂ pvpv
t

v
t

sss  (2.6) 

 
The second wave equation for δp follows from the first because of the relation (2.3).  
When the wave equation for δp has been solved, (2.4) can be used to find the velocity 
field u .   

r

We shall usually be concerned with solutions that have sinusoidal time 
dependence.  We use the convention that all time-dependent quantities vary as exp(+iωt), 
and take real parts to find physical quantities.  (This is the same convention that is used in 
electronics to express voltages, currents, and impedances.)  The wave equation for δp and 
(2.4) become: 
 

( ) .    ;0
0

222 piupvs δ
ωρ

δω ∇==∇+
rr  (2.7) 

 
The first of these is the Helmholtz equation, the most common starting point for solving 
acoustics problems. 
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2.2  Sound Velocity 
 
To express the sound velocity (2.6) in a form that is more familiar in 

thermodynamics, we consider an small fluid element with volume  in the quiescent 
state that varies by 

0V
Vδ when the density varies by δρ : 

 

0
0 V

Vδρδρ −=  

 
In terms of Vδ the sound velocity becomes 
 

.
0

02 ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=
V
pV

vs ρ
 (2.8) 

 
Suppose that the fluid is an ideal gas at constant temperature, so that .  

Evaluating (2.8), we find 
00VppV =

 

.
0

02
ρ
p

vs =         (ideal gas, constant temperature) (2.9) 

 
On the other hand, if there is no heat flow out of the fluid element, so that the pressure 
change is adiabatic, an ideal gas obeys 
 

,
C
C

    ;
V

p
00 == γγγ VppV  (2.10) 

 
where γ  is the adiabatic index, equal to the ratio of the heat capacity at constant pressure 
to the heat capacity at constant volume.4  The sound velocity is now 
 

.
0

02
ρ

γ
p

vs =         (ideal gas, adiabatic conditions) (2.11) 

 
Recalling that γ =7/5 for a diatomic ideal gas, we see that (2.9) and (2.11) imply 

very different values for the sound velocity in air.  Experiments, and more complete 
theories, show that adiabatic conditions apply in gasses until one reaches frequencies so 
high that the sound wavelength becomes comparable to the molecular mean free path.5  
The ideal gas equation of state combined with (2.11) shows that vs varies as T  at 
constant pressure, and is independent of pressure at constant temperature.  For air at 
standard pressure and temperature, both of these predictions are borne out to high 
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accuracy.  Small variations of the sound velocity with pressure (at constant temperature) 
can be used to measure the second virial coefficient, i.e. to quantify departures from 
ideality.6

 
Dissipation in acoustics is an interesting and surprisingly involved subject.7,8  Our wave 
equation (2.7) contains no dissipation because it was derived from Euler’s equation (2.1), 
rather than from the more general Navier-Stokes equation, which includes dissipative 
bulk and shear viscosity forces.  The shear viscosity is due to diffusion of momentum 
between adjacent regions of differing velocity ur , and is present even in the absence of 
temperature gradients.   

 
Because conditions in the bulk are nearly adiabatic, a temperature wave always 

accompanies the acoustic pressure wave, leading to at least some irreversible heat flow 
and hence additional dissipation beyond that caused by shear viscosity.  Heat flow occurs 
along bulk temperature gradients and along gradients close to boundaries, where the gas 
is in contact with nearly isothermal solid walls.  Significant irreversible heat flow may 
also occur internal to the gas, between the translational degrees of freedom and molecular 
vibrations or rotations.  This effect contributes to bulk sound absorption in air, and 
explains why it is so sensitive to humidity.9  At the end of the next chapter, will say a 
more about dissipation in waveguides, where the most important effects are shear 
viscosity and heat flow at the walls. 

 
In this section and the previous one we have had to distinguish between the 

quiescent pressure and density, and the acoustic perturbations.  We will have little need to 
do so below, so we adopt simpler notation.  The quiescent density is denoted simply ρ.  
We use p(t) and to represent the time-dependent acoustic pressure and velocity, and 
p and u  for the time Fourier-amplitudes.  In this notation, the Helmholtz equation is 

)(tur
r

 

( ) ,    ;0222 piupvs ∇==∇+
rr

ωρ
ω  (2.12) 

where 
 

).exp()(    );exp()( tiututiptp ωω rr
==  

 
For waves, we write 
 

))(exp()( txkiAtp ω−⋅−=
rr

, 
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This notation helps to distinguish between the time-space wave amplitude A and the time-
only amplitude p, which may depend on position.  (In the software documentation, we 
call p the phasor, and A the wave amplitude.) 
 
2.3  Plane Waves 
 
 The pressure plane-wave 
 

))(exp()( txkiAtp ω−⋅−=
rr

 (2.13) 
 
satisfies the Helmholtz equation if skv=ω , showing that is, in fact, the free-space 
phase velocity for sound waves.  The corresponding longitudinal velocity wave is 

sv

 

)),(exp(
 

ˆ)( txki
v
Antu

s
ω

ρ
−⋅−=

rrr  (2.14) 

 
where n)  is a unit vector in the direction of k

r
.  Note that a velocity running wave is in 

phase with its corresponding pressure running wave.  However, the pressure standing 
wave 
 

)exp()cos()( tixkAtp ωrr
⋅=  (2.15) 

 
has, according to (2.12), a corresponding velocity field that is one-quarter cycle out of 
phase, both in position and in time: 
 

)).2/(exp()sin(ˆ)( πω
ρ

−⋅= tixk
v
Antu

s

rrr  (2.16) 

  
 The acoustic intensity of a plane wave can be found by imagining a running wave 
traveling in the  direction and filling the half-space x>0, and a rigid plane at x=0.  
Suppose the plane moves with a velocity amplitude 

x̂
uxu ˆ=

r  that matches the x=0 velocity 
of the plane wave.  From (2.13) and (2.14), the pressure amplitude p at the plane must 
satisfy .uvp sρ=   For general complex values of the pressure and velocity amplitudes, 
the time-averaged power per unit area (or intensity) carried away by the wave is 
 

)(
2
1))exp(())exp(( uptiutipI ∗ℜ=ℜℜ= ωω  (2.17) 

 
where ℜ  is the real part.  For the plane wave we find 
 

11 



.
2
1

2
1 2

2
uv

v
p

I s
s

ρ
ρ

==  (2.18) 

 
The wave impedance  of an acoustic plane wave is given by upz /≡
 

svz ρ=  (2.19) 
 
If (2.19) is substituted into (2.18), the results should seem familiar from the 
corresponding power formulae used in electronics.  The factor of ½ may be unexpected; 
it appears because we use amplitudes rather than rms quantities. 
 
2.4  Spherical Waves 
 

Insight into radiation problems can be gained from examining spherical wave 
solutions to (2.12).  An out-going spherical pressure wave may be written 
 

.))(exp()(
r

tkriAtp ω−−
=  (2.20) 

 
It is a solution to the Helmholtz equation (2.12) with skv=ω .  The corresponding 
velocity field is 
 

,))(exp(11)(
r

tkri
ikrv

Antu
s

ω
ρ

−−
⎟
⎠
⎞

⎜
⎝
⎛ += )r  (2.21) 

 
where n)  is a unit vector in the radial direction.   
 

To find the radiated power P, we imagine a spherical surface (the source) at the 
radius r  that moves radially with a velocity matching the wave velocity.  Using (2.17), 
and multiplying by the area of the source, we find: 
 

( )
( )

.
12

14
2
14 2

2
22

2
2

kr
kruvr

v
p

rP s
s +
== ρπ

ρ
π  (2.22) 

 
where p and u are the pressure and velocity amplitudes at the radius r.  The first result in 
terms of p was already noted in Chapter 1 and is essentially the same as for a plane wave.  
The second form in (2.22) is also similar to the plane wave result if the source is larger 
than a wavelength, so that .  However, when the source is small compared to a 1>>kr
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wavelength, the source velocity has to be larger by a factor of  to produce the same 
power per area as a large source.   

kr/1

 
The wave impedance at the source upz /≡  is 

 

,
1 ikr

ikrvz s +
= ρ  (2.23) 

 
the same as the plane wave result when the source is large.  When the source is small, the 
impedance magnitude is reduced by a factor  relative to the plane wave value, and the 
phase becomes imaginary and positive.  In electronics, an inductor has an impedance 
with a positive imaginary phase.  Here, the impedance is that of the inertia of a sheet of 
air with a thickness equal to the source radius. 

kr
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3. Acoustic Waveguides 
 
3.1  Propagating Modes 
 
 Molecular scattering at surfaces is almost always diffuse.  As a consequence, the 
boundary condition for a fluid at a solid surface is that all components of the velocity ur  
must vanish.1  The shear viscosity η tends to retard flow parallel to the surface, but it 
dominates the flow only in a thin region known as the viscous penetration depth 
 

.2
ρω
ηδ =s  (3.1) 

 
There is also a thin region near the surface where bulk adiabatic conditions transition to 
the nearly isothermal surface.  The thermal penetration depth is given by 
 

ωρ
κδ
p

h c
2

= , (3.2) 

 
where κ is the thermal conductivity and cp the heat capacity at constant pressure (per unit 
mass).  For air under standard conditions, and for frequencies from 20 Hz to 20 kHz,  

sδ varies from 0.490 to 0.0155 mm, while hδ  varies from 0.582 to 0.0184 mm.  Both 
lengths are thus much smaller than typical waveguide dimensions.  If the flow in this thin 
surface layer may be ignored, we can solve the Helmholtz equation using sliding 
boundary conditions.  That is, only the perpendicular component of u  must vanish at a 
boundary, or equivalently (according to 2.12), the normal derivative of must be zero on 
the boundary.  Corrections due to the boundary layers may ignored, or treated as small 
perturbations.  See Trusler for a careful treatment of these issues.

r

p

2  In the last section of 
this chapter we will return to the effects of boundary layers, but until then we ignore them 
and use sliding boundary conditions. 
 

If we align the direction of propagation of the plane wave (2.13) with the axis of a 
uniform cylindrical waveguide, the sliding boundary condition will be satisfied.  We thus 
have found a mode of the structure that propagates with the free-space sound velocity and 
has a linear dispersion relation skv=ω .  The pressure distribution in this mode is 
uniform across a plane perpendicular to the waveguide axis.   

 
There are also higher modes that have nodal surfaces parallel to the axis, as 

shown in Figure 3.1.  All modes may be labeled by two integers (m,n), where m is the 
number of nodal planes and n is the number of nodal cylinders parallel to the axis.  All 
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modes with 0 are doubly degenerate.  Only the (0,0) mode propagates at all 
frequencies and has a linear dispersion relation.  The other modes only propagate above 
certain cut-off frequencies .  The free-space wavelengths

≠m

cf csc fv /=λ corresponding to 
the lowest three cut-off frequencies are 1.7063, 1.0286, or 0.8199 times the waveguide 
inside diameter, for modes (1,0), (2,0), and (0,1) respectively.  For 25 mm diameter 
waveguide filled with air under standard conditions, the cut-off frequencies for these 
three modes are 8064 Hz, 13,380 Hz and 16,780 Hz.  Waveguide measurement devices 
are generally designed to operate with only the (0,0) mode propagating.  The onset of 
propagation of the (1,0) mode thus marks the useful the upper frequency limit.  Similar 
results are found for uniform waveguides with other cross-sectional shapes.3

 

 
 

Figure 3.1.  Pattern of nodal planes and cylinders for the uniform mode 
and the three modes with lowest cut-off frequencies.  The relative sign of 
the pressure on opposite sides of the nodal surfaces is indicated. 

 
 In other fields, modes with linear dispersion relations and zero frequency at zero 
wave number are called either acoustic modes or, by analogy to photons, massless modes.  
Modes with a cut-off frequency are called either optical modes, after phonons that couple 
strongly to light, or massive modes, after the dispersion relation for a massive particle. 
 
3.2  Acoustic Circuit Elements 
 

A circuit is a description of a dynamical system in terms of circuit elements 
obeying Kirchoff’s laws.4  Each circuit element (Figure 3.2) has two or more terminals at 
which are defined two kinds of scalar variables: ‘through’ and ‘across’.  The product of a 
through variable and an across variable has the dimensions of power.  Terminals are 
connected together by wires to form networks, and there may be junctions at which three 
or more wires come together.  Kirchhoff’s laws are: 1) The through variable is strictly 
conserved through junctions, wires, and circuit elements at every instant.  That is, at 
every instant the amount of through variable flowing into one end of a wire is the same as 
the amount flowing out the other end;  the total through variable flowing into a junction is 
equal to the total amount flowing out;  and the total through variable flowing into a 
circuit element is equal to the total amount flowing out.  2)  The across variable is a 
constant across wires and junctions and is single-valued throughout the circuit.  As a 
consequence, the sum of changes of the across variable around any closed path (which 
may traverse wires, junctions, and circuit elements) is zero.  Each circuit element has a 
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constitutive relation that connects its through and across variables.  These relations may 
only on depend upon differences of the across variables. 

 
Electronics, with current and voltage as the through and across variables, is , of 

course, the prototypical circuit theory from which the general idea has been abstracted.  
When an accurate circuit representation of a dynamical system can be given, it may 
represent an enormous simplification, since the equations of motion become a set of 
ordinary integro-differential equations in time, rather than one or more partial differential 
equations.  It is not required that the constitutive relations be either linear or time-
invariant, but when this is the case, and the system is transformed to frequency-domain, 
the description simplifies further to a set of linear algebraic equations.  In many cases, 
even when there are non-linear elements (such as transistors) the equations can still be 
linearized for small variations of the variables about a steady state, and again the problem 
becomes one of linear algebra. 

 

 
 

Figure 3.2.  (a) A 2-terminal circuit element.  (b) A 5-terminal circuit 
element.  (c)  A network containing 5 2-terminal elements and 4 junctions.  
This  network has two ports, or terminal pairs. 
 
For the reader familiar with electronics, translating an acoustic problem into the 

analogous electronic problem can be a great aid to intuition.  Even if one does not have 
this advantage, the electronic language provides access to a repertoire of problem solving 
techniques, and to powerful software tools devoted to circuit problems.*  For this last 
reason particularly, we adopt electronic terminology, sign conventions, and schematic 
symbols in this manual.   

 
 We shall define our terminals at planes perpendicular to the axis of a cylindrical 
waveguide and in regions where the flow is uniform and directed along the axis.  It is not 
necessary to be so restrictive, but this will give us a useful starting point.  Consider first 
the short section of waveguide shown in Figure 3.3(a).  For the across variables we use 
the acoustic pressures p at each end.  The through variable is the volume velocity 

, where S is the cross-sectional area of the terminal and u is the fluid velocity.  
The product pU has the dimensions of power.   

uSU =

                                                 
* For example, SPICE and its derivatives.  Search ‘LTspice’ on the internet for an excellent free version. 
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This circuit element will require a network containing a pair of two-terminal 

elements for its description.  To isolate the effects of the elements one at a time, we 
consider two idealizations.  First, we suppose that the fluid is incompressible.  Then U 
will be conserved;  the same volume velocity (volume per unit time) will flow in one end 
as flows out the other.  Thus in Figure 3.3(a) we have .  This will also be 
true of the diameter transition shown in 3.3(b), while for the branched pipe 3.3(c) we 
have , so U is again conserved.  One might suppose that the mass current 
uSρ would be a suitable through variable.  However, for a section of waveguide with a 
density discontinuity  (see Figure 3.3(d)) this choice would not yield a conserved flow. 

UUU == 21

321 UUU +=

 

 
 

Figure 3.3.  (a) Circuit element for a short section of waveguide. 
(b) Waveguide section with area change. (c)  Branched waveguide. 
(d) Section with density discontinuity. (e) Inertance circuit element. 
(f) Compliance circuit element.  (g) Lumped element model for a 
waveguide section. 

 
 What is the equation of motion for the element in Figure 3.3(a) in the 
incompressible case?  Using Newton’s law, we have  
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where we have defined the pressure drop p(t).  The fluid density is ρ, and l is the length of 
the waveguide section.  This is a linear and time-invariant relation which may be Fourier-
transformed (using )exp( tiω+ time dependence) to yield 
 

.   ,    ,
S
lLLiZUZp LL
ρω ===  (3.3) 

 
The description of an inductor in electronics is exactly analogous; there L is called the 
inductance and ZL is the impedance of the inductor with inductance L.  For acoustics we 
will retain the symbol L but call it inertance instead of inductance.   
 
 Now suppose that the fluid is nearly massless, but the adiabatic compressibility 
(fractional change in volume per change in pressure, with no heat flow) has the value of 
the actual fluid of interest.  Then there are no inertia forces so there will be no pressure 
drop across the element.  However, as the pressure changes the fluid will compress and 
there must be net flow into the element.  The total volume velocity into the element (from 
both sides) is 
 

,2 dt
dp

v
V

dt
dp

p
VU

sρ
ρ

ρ
=

∂
∂

=  

where V is the volume of the element.  (The first fraction in this equation is the adiabatic 
compressibility.)  If we Fourier transform as before we find 
 

./   ,/1    , 2
sCC vVCCiZUZp ρω ===  (3.4) 

 
The quantity C is analogous to the capacitance in electronics;  in acoustics we call it the 
compliance, and  is the impedance of the compliance.  The schematic symbol for the 
compliance is shown in Figure 3.3(e).  The ground symbol at the bottom terminal 
indicates that the pressure there is zero, i.e. the pressure drop across the compliance is 
measured relative to the quiescent or ambient pressure.  In a sense this is a cheat;  circuit 
element constitutive relations are only allowed to depend on differences of the across 
variable, but the fluid density depends on the common value of the pressures p

cZ

1 and p2, 
not their difference, so we have had to introduce another terminal connected to zero 
pressure.  In electronics it makes sense to have either end of a capacitor connected to 
time-varying potentials, but in acoustics it does not.   
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 Returning to realistic values of both the mass density and the compressibility, we 
may represent all effects with the circuit of Figure 3.3(f), provided that the waveguide 
section being modeled is much shorter than a wavelength of sound at the frequency of 
interest.  This restriction is required simply because the model only contains two volume 
velocity variables and two pressure variables, and thus it can only include the effects of 
linear variations of p and U with position.  Circuit elements like L and C that describe 
objects small compared to a wavelength are called lumped.  More general elements that 
can model continuous variations of the field variables are called distributed. 
 

The impedance for any (linear and time-invariant) two-terminal element is 
.  For multi-terminal elements with one terminal at a reference potential, the 

impedance is defined Z
Up /=Ζ

ij = piUj where i, j label the terminals, and pressures are measured 
relative to a reference terminal.  When i = j we speak of a driving-point impedance, 
otherwise a trans-impedance.  Similar definitions are used for the admittance,  
The impedance may be separated into real and imaginary parts

./ pUY =
iXRZ += and likewise 

the admittance .  R is called resistance, X reactance, G conductance, and B 
susceptance. 

iBGY +=

 
 There is an important sign convention for two-terminal elements buried in the 
definitions above:  if the pressure drop is defined as 21 ppp −= , then a positive value of 
U means that flow enters on the p1 side of the element.  If this is reversed, all impedances 
and admittances will have unconventional signs. 
 
 Figure 3.4(a) shows a coaxial electrical transmission line, which, like our acoustic 
line, has an ‘acoustic’ mode for which the across and through variables (voltage and 
current) have no dependence on coordinates perpendicular to the axis.  Figure 3.4(d) 
shows an exactly analogous acoustic line.  The lumped element model in Figure 3.4(b) 
approximates either system.  Consider first the straight section on the left side of the 
figure that is modeled by three identical LC sections.  (Many more sections might be 
needed depending on the wavelengths and accuracy of interest.)   
 

It is straightforward to show that this model reproduces the Helmholtz wave 
equation in the limit where many LC sections are used.  Let the section length l become 
∆x, the flow difference across an element be 12 UUU −=∆  and the pressure difference 
be .  Then the acoustic circuit equations for one element are 12 ppp −=∆
 

,    ,2 S
pUi

x
p

v
Spi

x
U

s
ω

ρ
ω −=

∆
∆

−=
∆
∆  
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where p is the pressure at the top of the compliance and U is the current through the 
inertance.  Taking the limit , and substituting the second equation into the first, 
leads to the Helmholtz equation in one dimension: 

0→∆x
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22
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pSiUp
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==⎟
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 A one-dimensional running wave moving in the positive x direction and its 
corresponding current are written 
 

).exp()exp(    ),exp( ikx
L
CAikx

v
SAUikxAp

s
−=−=−=

ρ
 

 
The ratio 
 

 CLSvZUp s /// 0 === ρ   (3.6) 
 
is know as the characteristic impedance Z0 of the line and is equal to the wave impedance 
z (defined in Section 2.3) divided by the waveguide area S.  The units of the acoustic 
impedance Z are (Pa s)/m3, a combination that is sometimes called acoustic ohms;  we 
denote it Ωa.  For air at standard conditions and a 25 mm diameter waveguide, 

.  This sets the scale for impedance in waveguide problems.  Notice that 
reducing the diameter of an acoustic line increases its impedance, although it decreases 
the impedance of a coaxial line. 

aM 84.00 Ω=Z

 
 Combining the above results for the inertance and the compliance one finds 
 

.
LC
lvs =  (3.7) 

 
If the line length l is moved to the denominator of this expression we see that the sound 
velocity depends on the inertance and compliance per unit length of line.   
 

Figure 3.4 shows several other features that can easily be handled with circuit 
elements.  The system is driven at the left by an electrical current source, or its acoustic 
analog, a moving piston which establishes a volume velocity U.  Near the middle of the 
line there is a diameter transition.  If it is much smaller than a wavelength, it can be 
modeled using a compliance given by (3.4) and an inertance 
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U
L rρ  (3.8) 

 
where the integral is over the volume of the element and ur is the fluid velocity, now a 
function of the coordinates.  The calculation is done using the flow field in the static 
limit;  that is, a solution of (2.12) in the limit 0→ω .  Equation (3.8) follows from the 
fact that ½L|U |2 is the kinetic energy. 
 
 The coaxial line in Figure 3.4 has a resistive leak from the center conductor to the 
shield.  The constitutive relation for an acoustic resistor is 
 

URp = , (3.9) 
 
where, as in (3.3) and (3.4), p is the pressure drop across the two-terminal element.  The 
acoustic resistor corresponds to a leak to ambient pressure.  A given internal pressure 
creates a flow to the outside that is proportional to the pressure and varies inversely with 
the flow resistance.  One can also have resistors in series with the inertances that will 
create additional pressure drops along the line.   
 

The electrical line in Figure 3.4 is terminated at the right end by an electrically-
small loop antenna.  This means that it is much smaller than a wavelength of 
electromagnetic radiation at the frequency of interest.  A good lumped-element model for 
such an antenna is an inductor in series with a resistance.  The resistance represents 
radiation reaction;  it models the power lost to radiation.  The open end shown in Figure 
3.4(d) is a close acoustic analog to the electrically-small antenna, assuming that the 
waveguide cross-section is much small than an acoustic wavelength, as is normally the 
case.  For a rough understanding, we can suppose that every point of the terminating 
plane at the open end of the waveguide (of radius a) is subject to the same wave 
impedance as every point on the surface of a radiating sphere of radius a.  (The 
radiating sphere was discussed in Section 2.3.)  Expanding (2.23) for small ka  and 
dividing by the waveguide area S, we find for 

upz /=

SzZ /= : 
 

...)(...))(( 2
0

2
0 ++=++= kaZ

S
aikaikaZZ ρω  . (3.10) 

 
The first term is the impedance of an inertance of length a and area S.  It acts just 

like an extension of the waveguide with a length equal to the waveguide radius.  Detailed 
calculations show that the correct ‘end correction’ is 0.62a for an un-flanged open end 
and 0.86a for a flanged end.5  The second term in (3.10) gives the value of the radiation 
resistance of the termination.  It is (ka)2 less than the characteristic impedance, and thus 
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poorly matched to the line.  (Detailed calculations give half this value for a flanged pipe, 
and one fourth for an un-flanged open.)  We will see in the next section that the mismatch 
implies that most of the power incident on the termination will be reflected. 

A closed end in acoustics has no similar corrections; it is simply a point where 
, corresponding to an open circuit.  In electronics, an open circuited end has 

corrections due to stray capacitance, while a shorted end can be made nearly ideal. 
0=U

 

 
 

Figure 3.4.  (a) An electromagnetic coaxial transmission line with a 
diameter change, a resistive leak, and a loop antenna load. The line is 
driven by a current source.  (b) A lumped-element approximation to the 
coaxial line.  (c) A mixed representation of the coaxial line with lumped 
elements and distributed transmission-line sections. The line sections are 
labeled by their impedances Z and lengths l.  (d)  An analogous acoustic 
waveguide driven by a piston, with a diameter change, a leak, and an open 
termination. 
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 Instead of the lumped-element model of Figure 3.3(b), it is often convenient to 
use a combination of lumped and distributed elements, as in Figure 3.3(c).  Each straight 
section is modeled by a two-port element (a port is a pair of terminals) with exact 
constitutive relations parameterized by characteristic impedances and lengths.  (The 
diagram conventionally used for these elements may cause confusion. The lower line is a 
wire at pressure  The upper line is not a wire in the sense we have been using, it 
just represents the wave-carrying medium.)  Line-section circuit elements like these are 
very useful and are commonly available in circuit simulation programs.  We will develop 
concepts and techniques for describing their behavior in the next two sections. 

.0=p

 
3.3  Reflection Coefficient 
 

Consider the distributed line section in Figure 3.5, with characteristic impedance 
.  At the right end we place a termination or load with impedance Z.  We suppose that 

somewhere to the left there is a sinusoidal generator that can inject waves into the line.  
The coordinate x has an origin at some arbitrary location, and in terms of this coordinate 
the location of the load is l.   (The wires to the right of the terminals do not extend the 
length of the line.)  The most general pressure and volume-velocity waveforms that can 
be present (at a single frequency) are 

0Z

 
)),exp()exp((    ),exp()exp( 1

0 ikxAikxAZUikxAikxAp LRLR +−−=++−= −  (3.11) 
 
where AR, AL are the right-going and left-going wave amplitudes.  We have used (3.5) for 
U, and skv=ω to express the first factor in terms of Z0.  We define the reflection 
coefficient 
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= , (3.12) 

 
as the ratio of the pressure amplitude reflected off the termination to the incident 
amplitude.  In reflectometry, the position x at which the reflection coefficient is measured 
is known as the reference plane. 
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Figure 3.5.  Transmission line section with characteristic impedance 
and termination impedance Z.  The distance from the reference plane 

to the termination is l. 
0Z

 
 

Let us first find S with the reference plane at the location of the load, or with 
.  From the definition of the impedance and (3.11) we have lx =
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Expressing  in terms of Z we find )(lS
 

.)(
0

0
ZZ
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+
−

=  (3.13) 

 
Using (3.12) we can write S at an arbitrary location x in terms of : )(lS
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In words, this equation says that moving the reference plane towards the load a distance 

multiples S by a phase x∆ )2exp( xik∆ , and moving it towards the source multiples S by a 
phase  Substituting (3.13) into (3.14) gives ).2exp( xik∆−
 

)).(2exp()(
0

0 lxik
ZZ
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The inverse of this is also useful: 
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Another basic formula for reflectometry answers the following question:  Suppose we 
have, as in Figure 3.5, an impedance Z terminating a line at a the position l.  What 
impedance  is this equivalent to at a general position x?  To answer this question we 
switch x and l in (3.15) so that is gives us Z(x) for a given S(l), and then substitute in S(l) 
from (3.13).  The result is 

)(xZ
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In Figure 3.6 we map the reflection coefficient S on the complex plane, with 

  From (3.13), zero reflection occurs for a matched termination .  We find 
 for   and  for 

.lx = 0ZZ =
1+=S ∞→Z 1−=S 0=Z , corresponding in acoustics to ideal closed 

and open ends (but in circuit language to open and shorted terminations, respectively).  
Our amplitudes are defined in terms of pressure, so 1+=S  means that the reflected 
pressure wave is in phase with the incident wave and thus there is a pressure anti-node at 
a closed end, as expected, and a node at an ideal open end.   

 
 

 
 

Figure 3.6.  The reflection coefficient S for various values of the 
termination impedance Z, with the reference plane at the termination.  The 
dotted lines show loci for fixed values of the real constant c. 
 
Analysis of (3.13) shows that the locus of points with any fixed value of is a 

circle passing through +1 tangent to the line 
)(Zℜ

1)( =ℜ S .  Likewise, the locus of points with 
any fixed  is a circle passing through +1 tangent to the line )(Zℑ .0)( =ℑ S   All S values 
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for satisfy 0)( >ℜ Z .1<S   In other words, any termination with positive resistance 
produces a reflected wave with a smaller amplitude than the incident wave.  Such 
terminations are called passive.  A lossless termination ( 0)( =ℜ Z ) will have a reflection 
coefficient on the unit circle.  The blowing end of a woodwind instrument is an active 
termination (though perhaps not a very linear one) with 0)( <ℜ Z and S outside the unit 
circle.  Beautiful and accurate paper maps of the reflectance plane, known as Smith 
charts, were in heavy use before computer plotting made them less essential.  To see 
these, and examples of their use, consult a textbook on microwave circuits.5 

 

 
 

Figure 3.6b.  Terminal variables for a line section. 
 

 As an application of these ideas, let us find the constitutive relations for a line 
section with characteristic impedance and length l.  The terminal variables are defined 
in Figure 3.6b.  The direction shown for positive  is commonly chosen but not 
universal.  The impedance matrix elements are defined as 
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If we connect an infinite impedance to port 2 so that 02 =U , then 
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In the limit , (3.14) gives ∞→Z
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for the reflection coefficient into port 1.  On the other hand, from (3.11) 
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which may be combined with (3.18) to yield 
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We have used  and 1122 ZZ = 2112 ZZ = , which follow from symmetry under exchange 
of the ports. 
 
3.4  Waveguide Scattering Matrix 
 
 The scattering or S-matrix is a generalization of the reflection coefficient S for 
systems with more than one port.  We use the notation and coordinates shown in Figure 
3.7(a).  The x-coordinates are defined so the positive direction is in-going on each side, 
and the ports are distances  and  from the origins.  General pressure waves on each 
side are 

1l 2l

 
)exp()exp(    ),exp()exp( 22221111 ikxAikxApikxAikxAp LRLR ++−=++−=  (3.20) 

 
Note that we now use the subscript R for in-going wave amplitudes regardless of the 
orientation of the line.  We suppose that the line impedance  is the same on both sides, 
although this restriction can be removed with little complication.  The ports need not be 
co-linear and we can readily generalize to any number of ports, and/or to more than one 
propagating mode in each waveguide.  Our S-matrix is the same as the object discussed 
in free-space scattering theory;  only the choice of modes is different.
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 The S-matrix is defined 
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so that it linearly transforms a vector of in-going amplitudes into a vector of out-going 
amplitudes. If one port is driven and all others are connected to matched terminations 

, so the only incident wave is from the driven side, then 0Z
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Figure 3.7.  (a) Coordinates and port definitions for the scattering matrix.  
Reference planes are located at the coordinate origins.  (b) Idealized zero-
length blocked line.  (c) Idealized zero length open ends.  (d)  Matched-T 
attenuator. 

 
Figure 3.7(b) shows a two-port with open circuits at both ports, corresponding to 

a zero-length blockage in an acoustic waveguide, while Figure 3.7(c) shows circuit 
shorts, corresponding to idealized zero-length open ends.  The S-matrices are (with both 
reference planes located at the ports),  
.   
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In other words, the reflection coefficients are 1±  at both ports and there is no 
transmission. 
 

Figure 3.7(d) shows a resistive attenuator.  If the resistor values a and b are 
chosen to be: 
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then we have a matched attenuator, with S matrix 
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To demonstrate this, first find the driving-point impedance of  port 1 with a matched 
termination at port 2.  The result will be , showing that there will be no reflected 
wave, and .  Next, show that the ratio of the pressure at port 2 to the pressure at 
port 1 is 

0Z
011 =S

α , when port 1 is driven and port 2 is connected to a matched termination.  
With the reference planes at the ports, this implies α=21S .  The other elements are 
given by symmetry.  In electronics, broadband matched resistive attenuators are 
commonplace.  Similar components for acoustic waveguides can be imagined, but as far 
as we are aware they have not been demonstrated.  
 
 The resistive attenuator with 1=α  is simply a wire, or zero-length line.  A line of 
length l and characteristic impedance  has the S-matrix 0Z
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corresponding to no reflection and a phase shift of ).exp( ikl−   This S-matrix fully 
describes the line section and contains the same information as the impedance matrix 
(3.19), but in a simpler form.  However, it would more complicated for a line segment 
with Z0′ different from the feed line impedance , whereas in (3.19) we can handle that 
case with the replacement 

0Z
→0Z  Z0′.  

 
 A unitary S-matrix describes a two-port in which no power is dissipated.  If we 
adopt the notations S, AR, and AL for the S-matrix and the in-going and out-going wave 
amplitude vectors, we can write (3.21) as 
 

RL ASA = . (3.25) 
 
Multiplying on the left by the hermetian conjugate gives 
 

RRLL ASSAAA ††† = . (3.26) 
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Thus if S is unitary (S†S = 1) we find that the norm of the wave amplitude vector is 
conserved, which implies that the out-going power is equal to the in-going power.  The S-
matrices given above for the block, the open end, and the line segment are all unitary, but 
of course the attenuator is not, except when 1=α . 
 
 Much more about waveguide circuits, including questions of synthesis (how to 
construct an element with a given S-matrix or other specifications) and realizability (what 
specifications are possible), can be found in text books on microwave electronics and 
circuit theory.7

 
3.5  Attenuation in Waveguides 
 
 As was mentioned at the start of this chapter, use of the Helmholtz equation with 
sliding boundary conditions is an approximation that neglects both the viscous boundary 
layer with thickness sδ and the thermal boundary layer with thickness hδ .  Both effects 
are dissipative and cause damping of propagating modes.  Detailed calculations are 
somewhat involved, though they date back to 19th century work by Helmholtz and 
Kirchhoff.  Here we only quote the results, following the treatment given by Trusler,2 
who references both the original calculations and precise experimental tests.  

 
In the presence of attenuation the most general pressure wave becomes 

 
),exp()exp()exp()exp( xikxAxikxAp LR αα ++−−=  (3.27) 

 
where the attenuation constant α  is given by 
 

( ) .)1(
2
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av hs

s
ωδγδωα  (3.28) 

 
Here a is the waveguide radius, and γ  is the adiabatic index.  Evaluating this expression 
for air under standard conditions, and for 25 mm diameter waveguide, we find that the 
attenuation length α/1  varies from 92 m to 3.0 m as the frequency varies from 20 Hz to 
20 kHz.  It is essential to include this effect in many cases. 
 
 The boundary layers also reduce slightly the phase velocity so that its value v is no 
longer equal to the free-space velocity vs.  The fractional change of the phase velocity is 
 

( ) .)1(
2

1 12/1 −−∝−+
−

=
−

a
av

vv
hs

s

s ωδγδ  (3.29) 
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For the same conditions, this varies from -2.9% to -0.091% from 20 Hz to 20 kHz.   
 

The results derived in this chapter concerning the reflection coefficient and S-
matrix can now be adapted with the substitution 
 

αω i
v

kk −=→
~  (3.30) 

 
To be complete, one should also correct the characteristic impedance Z0 so that it 

has a small imaginary part, but we can ignore this in most situations.  It is possible to add 
small resistors to our lumped-element waveguide section to reproduce all of these 
results,8 but in most cases it is sufficient to rely on lossless calculations and then 
introduce the attenuation as in (3.27), with α  either calculated from (3.28) or fit to data 
as a phenomenological parameter.  Fitting may be necessary, since the theory for α can 
only be relied on when the surface roughness of the walls is much less than the boundary 
layer thicknesses. 
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